Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Nat Immunol ; 24(1): 186-199, 2023 01.
Article in English | MEDLINE | ID: covidwho-20244916

ABSTRACT

Most studies of adaptive immunity to SARS-CoV-2 infection focus on peripheral blood, which may not fully reflect immune responses at the site of infection. Using samples from 110 children undergoing tonsillectomy and adenoidectomy during the COVID-19 pandemic, we identified 24 samples with evidence of previous SARS-CoV-2 infection, including neutralizing antibodies in serum and SARS-CoV-2-specific germinal center and memory B cells in the tonsils and adenoids. Single-cell B cell receptor (BCR) sequencing indicated virus-specific BCRs were class-switched and somatically hypermutated, with overlapping clones in the two tissues. Expanded T cell clonotypes were found in tonsils, adenoids and blood post-COVID-19, some with CDR3 sequences identical to previously reported SARS-CoV-2-reactive T cell receptors (TCRs). Pharyngeal tissues from COVID-19-convalescent children showed persistent expansion of germinal center and antiviral lymphocyte populations associated with interferon (IFN)-γ-type responses, particularly in the adenoids, and viral RNA in both tissues. Our results provide evidence for persistent tissue-specific immunity to SARS-CoV-2 in the upper respiratory tract of children after infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Child , Pandemics , Adaptive Immunity , Palatine Tonsil , Antibodies, Viral
2.
Nature ; 614(7949): 752-761, 2023 02.
Article in English | MEDLINE | ID: covidwho-2185939

ABSTRACT

Acute viral infections can have durable functional impacts on the immune system long after recovery, but how they affect homeostatic immune states and responses to future perturbations remain poorly understood1-4. Here we use systems immunology approaches, including longitudinal multimodal single-cell analysis (surface proteins, transcriptome and V(D)J sequences) to comparatively assess baseline immune statuses and responses to influenza vaccination in 33 healthy individuals after recovery from mild, non-hospitalized COVID-19 (mean, 151 days after diagnosis) and 40 age- and sex-matched control individuals who had never had COVID-19. At the baseline and independent of time after COVID-19, recoverees had elevated T cell activation signatures and lower expression of innate immune genes including Toll-like receptors in monocytes. Male individuals who had recovered from COVID-19 had coordinately higher innate, influenza-specific plasmablast, and antibody responses after vaccination compared with healthy male individuals and female individuals who had recovered from COVID-19, in part because male recoverees had monocytes with higher IL-15 responses early after vaccination coupled with elevated prevaccination frequencies of 'virtual memory'-like CD8+ T cells poised to produce more IFNγ after IL-15 stimulation. Moreover, the expression of the repressed innate immune genes in monocytes increased by day 1 to day 28 after vaccination in recoverees, therefore moving towards the prevaccination baseline of the healthy control individuals. By contrast, these genes decreased on day 1 and returned to the baseline by day 28 in the control individuals. Our study reveals sex-dimorphic effects of previous mild COVID-19 and suggests that viral infections in humans can establish new immunological set-points that affect future immune responses in an antigen-agnostic manner.


Subject(s)
COVID-19 , Immunity, Innate , Immunologic Memory , Influenza Vaccines , Sex Characteristics , T-Lymphocytes , Vaccination , Female , Humans , Male , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Interleukin-15/immunology , Toll-Like Receptors/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Monocytes , Immunity, Innate/genetics , Immunity, Innate/immunology , Single-Cell Analysis , Healthy Volunteers
3.
Nat Commun ; 13(1): 4617, 2022 08 08.
Article in English | MEDLINE | ID: covidwho-2036812

ABSTRACT

There is limited knowledge on durability of neutralization capacity and antibody affinity maturation generated following two versus three doses of SARS-CoV-2 mRNA vaccines in naïve versus convalescent individuals (hybrid immunity) against the highly transmissible Omicron BA.1, BA.2 and BA.3 subvariants. Virus neutralization titers against the vaccine-homologous strain (WA1) and Omicron sublineages are measured in a pseudovirus neutralization assay (PsVNA). In addition, antibody binding and antibody affinity against spike proteins from WA1, BA.1, and BA.2 is determined using surface plasmon resonance (SPR). The convalescent individuals who after SARS-CoV-2 infection got vaccinated develop hybrid immunity that shows broader neutralization activity and cross-reactive antibody affinity maturation against the Omicron BA.1 and BA.2 after either second or third vaccination compared with naïve individuals. Neutralization activity correlates with antibody affinity against Omicron subvariants BA.1 and BA.2 spikes. Importantly, at four months post-third vaccination the neutralization activity and antibody affinity against the Omicron subvariants is maintained and trended higher for the individuals with hybrid immunity compared with naïve adults. These findings about hybrid immunity resulting in superior immune kinetics, breadth, and durable high affinity antibodies support the need for booster vaccinations to provide effective protection from emerging SARS-CoV-2 variants like the rapidly spreading Omicron subvariants.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Neutralizing , Antibodies, Viral , Antibody Affinity , COVID-19/prevention & control , Humans , Neutralization Tests , RNA, Messenger , SARS-CoV-2/genetics , Vaccination
4.
Nat Commun ; 13(1): 2979, 2022 05 27.
Article in English | MEDLINE | ID: covidwho-1931398

ABSTRACT

Neutralization capacity of antibodies against Omicron after a prior SARS-CoV-2 infection in children and adolescents is not well studied. Therefore, we evaluated virus-neutralizing capacity against SARS-CoV-2 Alpha, Beta, Gamma, Delta and Omicron variants by age-stratified analyses (<5, 5-11, 12-21 years) in 177 pediatric patients hospitalized with severe acute COVID-19, acute MIS-C, and in convalescent samples of outpatients with mild COVID-19 during 2020 and early 2021. Across all patients, less than 10% show neutralizing antibody titers against Omicron. Children <5 years of age hospitalized with severe acute COVID-19 have lower neutralizing antibodies to SARS-CoV-2 variants compared with patients >5 years of age. As expected, convalescent pediatric COVID-19 and MIS-C cohorts demonstrate higher neutralization titers than hospitalized acute COVID-19 patients. Overall, children and adolescents show some loss of cross-neutralization against all variants, with the most pronounced loss against Omicron. In contrast to SARS-CoV-2 infection, children vaccinated twice demonstrated higher titers against Alpha, Beta, Gamma, Delta and Omicron. These findings can influence transmission, re-infection and the clinical disease outcome from emerging SARS-CoV-2 variants and supports the need for vaccination in children.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Antibodies, Viral , COVID-19/complications , Child , Child, Preschool , Humans , Membrane Glycoproteins , Neutralization Tests , Spike Glycoprotein, Coronavirus , Systemic Inflammatory Response Syndrome , Viral Envelope Proteins
5.
Clin Infect Dis ; 75(9): 1645-1648, 2022 Oct 29.
Article in English | MEDLINE | ID: covidwho-1915538

ABSTRACT

Our study demonstrates that children who developed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination-induced myocarditis and may not receive another vaccination, could be susceptible to infection with Omicron and emerging variants. We observed higher neutralizing antibody titers in myocarditis patients vs. healthy vaccinated children, but significantly lower neutralization titers against Omicron in both groups.


Subject(s)
COVID-19 , Myocarditis , Child , Humans , SARS-CoV-2 , Neutralization Tests , Antibodies, Viral , Myocarditis/etiology , COVID-19/prevention & control , Vaccination/adverse effects , Antibodies, Neutralizing
6.
EBioMedicine ; 77: 103940, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1881926

ABSTRACT

BACKGROUND: Limited knowledge exists in post-partum women regarding durability of SARS-CoV-2 vaccine-induced antibody responses and their neutralising ability against SARS-CoV-2 variants of concern (VOC). METHODS: We elucidated longitudinal mRNA vaccination-induced antibody profiles of 13 post-partum and 13 non-post-partum women (control). FINDINGS: The antibody neutralisation titres against SARS-CoV-2 WA-1 strain were comparable between post-partum and non-post-partum women and these levels were sustained up to four months post-second vaccination in both groups. However, neutralisation titers declined against several VOCs, including Beta and Delta. Higher antibody binding was observed against SARS-CoV-2 receptor-binding domain (RBD) mutants with key VOC amino acids when tested with post-second vaccination plasma from post-partum women compared with controls. Importantly, post-vaccination plasma antibody affinity against VOCs RBDs was significantly higher in post-partum women compared with controls. INTERPRETATION: This study demonstrates that there is a differential vaccination-induced immune responses in post-partum women compared with non-post-partum women, which could help inform future vaccination strategies for these groups. FUNDING: The antibody characterisation work described in this manuscript was supported by FDA's Medical Countermeasures Initiative (MCMi) grant #OCET 2021-1565 to S.K and intramural FDA-CBER COVID-19 supplemental funds.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , Antibody Affinity , COVID-19/prevention & control , Female , Humans , Immunoglobulin G , Postpartum Period , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
8.
EBioMedicine ; 77, 2022.
Article in English | EuropePMC | ID: covidwho-1743737

ABSTRACT

Summary Background Limited knowledge exists in post-partum women regarding durability of SARS-CoV-2 vaccine-induced antibody responses and their neutralising ability against SARS-CoV-2 variants of concern (VOC). Methods We elucidated longitudinal mRNA vaccination-induced antibody profiles of 13 post-partum and 13 non-post-partum women (control). Findings The antibody neutralisation titres against SARS-CoV-2 WA-1 strain were comparable between post-partum and non-post-partum women and these levels were sustained up to four months post-second vaccination in both groups. However, neutralisation titers declined against several VOCs, including Beta and Delta. Higher antibody binding was observed against SARS-CoV-2 receptor-binding domain (RBD) mutants with key VOC amino acids when tested with post-second vaccination plasma from post-partum women compared with controls. Importantly, post-vaccination plasma antibody affinity against VOCs RBDs was significantly higher in post-partum women compared with controls. Interpretation This study demonstrates that there is a differential vaccination-induced immune responses in post-partum women compared with non-post-partum women, which could help inform future vaccination strategies for these groups.

9.
J Infect Dis ; 226(4): 655-663, 2022 09 04.
Article in English | MEDLINE | ID: covidwho-1722493

ABSTRACT

Passive antibody immunotherapeutics directed against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are promising countermeasures for protection and treatment of coronavirus disease 2019 (COVID-19). SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs) can impact the clinical efficacy of immunotherapeutics. A fully human polyclonal antibody immunotherapeutic purified from plasma of transchromosomic (Tc) bovines hyperimmunized with SARS-CoV-2 WA-1 spike (SAB-185) is being assessed for efficacy in a phase 2/3 clinical trial when different circulating SARS-CoV-2 variants predominated. We evaluated antibody binding, avidity maturation, and SARS-CoV-2 VOCs/VOIs virus-neutralizing capacity of convalescent plasma compared with different lots of SAB-185 and individual Tc bovine sera sequentially obtained after each vaccination against Alpha, Epsilon, Iota, Gamma, Beta, Kappa, and Delta variants. In contrast to convalescent plasma, sera and SAB-185 derived from hyperimmunized Tc bovines demonstrated higher antibody avidity and more potent cross-neutralizing activity of VOCs/VOIs. Thus, SAB-185 is a potential promising therapeutic candidate for the treatment of patients infected with SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Antibody Affinity , COVID-19/therapy , Cattle , Humans , Immunization, Passive , Immunoglobulin G , Neutralization Tests , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
11.
Clin Infect Dis ; 74(2): 327-334, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1662105

ABSTRACT

Convalescent plasma (CP) have been used for treatment of coronavirus disease 2019 (COVID-19), but their effectiveness varies significantly. Moreover, the impact of CP treatment on the composition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in COVID-19 patients and antibody markers that differentiate between those who survive and those who succumb to the COVID-19 disease are not well understood. Herein, we performed longitudinal analysis of antibody profile on 115 sequential plasma samples from 16 hospitalized COVID-19 patients treated with either CP or standard of care, only half of them survived. Differential antibody kinetics was observed for antibody binding, immunoglobulin M/immunoglobulin G/immunoglobulin A (IgM/IgG/IgA) distribution, and affinity maturation in "survived" versus "fatal" COVID-19 patients. Surprisingly, CP treatment did not predict survival. Strikingly, marked decline in neutralization titers was observed in the fatal patients prior to death, and convalescent plasma treatment did not reverse this trend. Furthermore, irrespective of CP treatment, higher antibody affinity to the SARS-CoV-2 prefusion spike was associated with survival outcome. Additionally, sustained elevated IgA response was associated with fatal outcome in these COVID-19 patients. These findings propose that treatment of COVID-19 patients with convalescent plasma should be carefully targeted, and effectiveness of treatment may depend on the clinical and immunological status of COVID-19 patients, as well as the quality of the antibodies in the convalescent plasma.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , COVID-19 Serotherapy
12.
EBioMedicine ; 74: 103748, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1568650

ABSTRACT

BACKGROUND: Limited knowledge exists regarding antibody affinity maturation following mRNA vaccination in naïve vs. COVID-19 recovered individuals and potential sex differences. METHODS: We elucidated post-vaccination antibody profiles of 69 naïve and 17 COVID-19 convalescent adults using pseudovirus neutralization assay (PsVNA) covering SARS-CoV-2 WA-1, variants of concern (VOCs) and variants of interest (VOIs). Surface Plasmon Resonance (SPR) was used to measure antibody affinity against prefusion spike and receptor binding domain (RBD) and RBD mutants. FINDINGS: Higher neutralizing antibodies were observed in convalescent vs. naïve adults against, WA-1, VOCs, and VOIs. Antibody binding to RBD and RBD mutants showed lower binding of post-vaccination sera from naïve compared with convalescent individuals. Moreover, we observed early antibody affinity maturation in convalescent individuals after one vaccine dose and higher antibody affinity after two doses compared with the naïve group. Among the naïve participants, antibody affinity against the SARS-CoV-2 prefusion spike was significantly higher for males than females even though there were no difference in neutralization titers between sexes. INTERPRETATION: This study demonstrates the impact of prior infection on vaccine-induced antibody affinity maturation and difference in antibody affinity between males and females. Further studies are needed to determine whether antibody affinity may contribute to correlates of protection against SARS-CoV-2 and its variants. FUNDING: The antibody characterization work described in this manuscript was supported by FDA's Medical Countermeasures Initiative (MCMi) grant #OCET 2021-1565 to S.K and intramural FDA-CBER COVID-19 supplemental funds. The SPARTA program was supported by the National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Department of Health and Human Services contract 75N93019C00052, and the University of Georgia (US) grant UGA-001. T.M.R is also supported by the Georgia Research Alliance (US) grant GRA-001. The CTRU was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR002378.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Neutralizing/blood , Antibody Affinity/immunology , BNT162 Vaccine/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/blood , COVID-19/immunology , Cell Line , Female , Humans , Male , Neutralization Tests , Protein Domains/immunology , Surface Plasmon Resonance , Vaccination , mRNA Vaccines/immunology
13.
Sci Adv ; 7(42): eabi6533, 2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1467653

ABSTRACT

Mucosal immunity plays a key role in prevention of SARS-CoV-2 virus spread to the lungs. In this study, we evaluated systemic and mucosal immune signatures in asymptomatic SARS-CoV-2­infected versus symptomatic COVID-19 adults compared with RSV-infected adults. Matched serum and nasal wash pairs were subjected to cytokine/chemokine analyses and comprehensive antibody profiling including epitope repertoire analyses, antibody kinetics to SARS-CoV-2 prefusion spike and spike RBD mutants, and neutralization of SARS-CoV-2 variants of concern. The data suggest independent evolution of antibody responses in the mucosal sites as reflected in differential IgM/IgG/IgA epitope repertoire compared with serum. Antibody affinity against SARS-CoV-2 prefusion spike for both serum and nasal washes was significantly higher in asymptomatic adults compared with symptomatic COVID-19 patients. Last, the cytokine/chemokine responses in the nasal washes were more robust than in serum. These data underscore the importance of evaluating mucosal immune responses for better therapeutics and vaccines against SARS-CoV-2.

14.
Nat Immunol ; 22(11): 1452-1464, 2021 11.
Article in English | MEDLINE | ID: covidwho-1454797

ABSTRACT

There is limited understanding of the viral antibody fingerprint following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children. Herein, SARS-CoV-2 proteome-wide immunoprofiling of children with mild/moderate or severe coronavirus disease 2019 (COVID-19) versus multisystem inflammatory syndrome in children versus hospitalized control patients revealed differential cytokine responses, IgM/IgG/IgA epitope diversity, antibody binding and avidity. Apart from spike and nucleocapsid, IgG/IgA recognized epitopes in nonstructural protein (NSP) 2, NSP3, NSP12-NSP14 and open reading frame (ORF) 3a-ORF9. Peptides representing epitopes in NSP12, ORF3a and ORF8 demonstrated SARS-CoV-2 serodiagnosis. Antibody-binding kinetics with 24 SARS-CoV-2 proteins revealed antibody parameters that distinguish children with mild/moderate versus severe COVID-19 or multisystem inflammatory syndrome in children. Antibody avidity to prefusion spike correlated with decreased illness severity and served as a clinical disease indicator. The fusion peptide and heptad repeat 2 region induced SARS-CoV-2-neutralizing antibodies in rabbits. Thus, we identified SARS-CoV-2 antibody signatures in children associated with disease severity and delineate promising serodiagnostic and virus neutralization targets. These findings might guide the design of serodiagnostic assays, prognostic algorithms, therapeutics and vaccines in this important but understudied population.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/complications , COVID-19/immunology , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/immunology , Adolescent , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19/diagnosis , Child , Child, Preschool , Disease Progression , Epitopes/metabolism , Female , Hospitalization , Humans , Immunity, Humoral , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Immunoglobulin M/metabolism , Male , Prognosis , Proteome , Severity of Illness Index , Systemic Inflammatory Response Syndrome/diagnosis
15.
iScience ; 24(9): 103006, 2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1364140

ABSTRACT

Hyperimmune immunoglobulin (hCoV-2IG) generated from SARS-CoV-2 convalescent plasma (CP) are under evaluation in clinical trials. Here we explored the antibody epitope repertoire, and virus neutralizing capacity of six hCoV-2IG batches as well as nine CP against SARS-CoV-2 and emerging variants of concern (VOCs). Epitope-mapping by gene-fragment phage display library spanning the SARS-CoV-2 spike demonstrated broad recognition of multiple antigenic sites spanning the entire spike that was higher for hCoV-2IG than CP, with predominant binding to the fusion peptide. In the pseudovirus neutralization assay and in the wild-type SARS-CoV-2 PRNT assay, hCoV-2IG lots showed higher titers against the WA-1 strain compared with CP. Neutralization of VOCs were reduced to different extent by hCoV-2IG lots but were higher than CP. Significant reduction of hCoV-2IG binding was observed to RBD-E484K followed by RBD-N501Y (but not RBD-K417N). This study suggests that post-exposure treatment with hCoV-2IG could be preferable to CP.

17.
Sci Adv ; 7(10)2021 03.
Article in English | MEDLINE | ID: covidwho-1119272

ABSTRACT

Limited knowledge exists on immune markers associated with disease severity or recovery in patients with coronavirus disease 2019 (COVID-19). Here, we elucidated longitudinal evolution of SARS-CoV-2 antibody repertoire in patients with acute COVID-19. Differential kinetics was observed for immunoglobulin M (IgM)/IgG/IgA epitope diversity, antibody binding, and affinity maturation in "severe" versus "mild" COVID-19 patients. IgG profile demonstrated immunodominant antigenic sequences encompassing fusion peptide and receptor binding domain (RBD) in patients with mild COVID-19 who recovered early compared with "fatal" COVID-19 patients. In patients with severe COVID-19, high-titer IgA were observed, primarily against RBD, especially in patients who succumbed to SARS-CoV-2 infection. The patients with mild COVID-19 showed marked increase in antibody affinity maturation to prefusion SARS-CoV-2 spike that associated with faster recovery from COVID-19. This study revealed antibody markers associated with disease severity and resolution of clinical disease that could inform development and evaluation of effective immune-based countermeasures against COVID-19.


Subject(s)
Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , Biomarkers/blood , COVID-19/immunology , COVID-19/pathology , SARS-CoV-2/physiology , Severity of Illness Index , Antibody Affinity/immunology , Antibody Formation/immunology , COVID-19/blood , COVID-19/virology , Cytokines/blood , HEK293 Cells , Hospitalization , Humans , Immunoglobulin Class Switching , Kinetics , Neutralization Tests , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Viral Load
18.
Nat Commun ; 12(1): 1221, 2021 02 22.
Article in English | MEDLINE | ID: covidwho-1096322

ABSTRACT

Hospitalized COVID-19 patients often present with a large spectrum of clinical symptoms. There is a critical need to better understand the immune responses to SARS-CoV-2 that lead to either resolution or exacerbation of the clinical disease. Here, we examine longitudinal plasma samples from hospitalized COVID-19 patients with differential clinical outcome. We perform immune-repertoire analysis including cytokine, hACE2-receptor inhibition, neutralization titers, antibody epitope repertoire, antibody kinetics, antibody isotype and antibody affinity maturation against the SARS-CoV-2 prefusion spike protein. Fatal cases demonstrate high plasma levels of IL-6, IL-8, TNFα, and MCP-1, and sustained high percentage of IgA-binding antibodies to prefusion spike compared with non-ICU survivors. Disease resolution in non-ICU and ICU patients associates with antibody binding to the receptor binding motif and fusion peptide, and antibody affinity maturation to SARS-CoV-2 prefusion spike protein. Here, we provide insight into the immune parameters associated with clinical disease severity and disease-resolution outcome in hospitalized patients that could inform development of vaccine/therapeutics against COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Affinity/immunology , COVID-19/immunology , Immunoglobulin A/immunology , SARS-CoV-2/immunology , Adult , Aged , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/virology , Cohort Studies , Cytokines/blood , Cytokines/immunology , Cytokines/metabolism , Epitopes/immunology , Female , Hospitalization/statistics & numerical data , Humans , Immunoglobulin A/blood , Male , Middle Aged , Neutralization Tests , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Surface Plasmon Resonance
19.
Sci Transl Med ; 12(550)2020 07 01.
Article in English | MEDLINE | ID: covidwho-591374

ABSTRACT

Multiple vaccine candidates against SARS-CoV-2 based on viral spike protein are under development. However, there is limited information on the quality of antibody responses generated with these vaccine modalities. To better understand antibody responses induced by spike protein-based vaccines, we performed a qualitative study by immunizing rabbits with various SARS-CoV-2 spike protein antigens: S ectodomain (S1+S2; amino acids 16 to 1213), which lacks the cytoplasmic and transmembrane domains (CT-TM), the S1 domain (amino acids 16 to 685), the receptor binding domain (RBD) (amino acids 319 to 541), and the S2 domain (amino acids 686 to 1213, lacking the RBD, as control). Resulting antibody quality and function were analyzed by enzyme-linked immunosorbent assay (ELISA), RBD competition assay, surface plasmon resonance (SPR) against different spike proteins in native conformation, and neutralization assays. All three antigens (S1+S2 ectodomain, S1 domain, and RBD), but not S2, generated strong neutralizing antibodies against SARS-CoV-2. Vaccination-induced antibody repertoire was analyzed by SARS-CoV-2 spike genome fragment phage display libraries (SARS-CoV-2 GFPDL), which identified immunodominant epitopes in the S1, S1-RBD, and S2 domains. Furthermore, these analyses demonstrated that the RBD immunogen elicited a higher antibody titer with five-fold higher affinity antibodies to native spike antigens compared with other spike antigens, and antibody affinity correlated strongly with neutralization titers. These findings may help guide rational vaccine design and facilitate development and evaluation of effective therapeutics and vaccines against COVID-19 disease.


Subject(s)
Antibodies, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibody Formation/immunology , Antigens, Viral/immunology , Epitopes/immunology , Female , Immunization , Neutralization Tests , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL